Manpages - Digest.3perl
Table of Contents
NAME
Digest - Modules that calculate message digests
SYNOPSIS
$md5 = Digest->new(“MD5”); $sha1 = Digest->new(“SHA-1”); $sha256 = Digest->new(“SHA-256”); $sha384 = Digest->new(“SHA-384”); $sha512 = Digest->new(“SHA-512”); $hmac = Digest->HMAC_MD5($key);
DESCRIPTION
The Digest::
modules calculate digests, also called fingerprints or
hashes, of some data, called a message. The digest is (usually) some
small/fixed size string. The actual size of the digest depend of the
algorithm used. The message is simply a sequence of arbitrary bytes or
bits.
An important property of the digest algorithms is that the digest is likely to change if the message change in some way. Another property is that digest functions are one-way functions, that is it should be hard to find a message that correspond to some given digest. Algorithms differ in how likely and how hard, as well as how efficient they are to compute.
Note that the properties of the algorithms change over time, as the algorithms are analyzed and machines grow faster. If your application for instance depends on it being impossible to generate the same digest for a different message it is wise to make it easy to plug in stronger algorithms as the one used grow weaker. Using the interface documented here should make it easy to change algorithms later.
All Digest::
modules provide the same programming interface. A
functional interface for simple use, as well as an object oriented
interface that can handle messages of arbitrary length and which can
read files directly.
The digest can be delivered in three formats:
- binary
- This is the most compact form, but it is not well suited for printing or embedding in places that can’t handle arbitrary data.
- hex
- A twice as long string of lowercase hexadecimal digits.
- base64
- A string of portable printable characters. This is the base64 encoded representation of the digest with any trailing padding removed. The string will be about 30% longer than the binary version. MIME::Base64 tells you more about this encoding.
The functional interface is simply importable functions with the same name as the algorithm. The functions take the message as argument and return the digest. Example:
use Digest::MD5 qw(md5); $digest = md5($message);
There are also versions of the functions with _hex or _base64 appended to the name, which returns the digest in the indicated form.
OO INTERFACE
The following methods are available for all Digest::
modules:
- $ctx = Digest->XXX($arg,…)
- $ctx = Digest->new(XXX => $arg,…)
- $ctx = Digest::XXX->new($arg,…)
The constructor returns some object that encapsulate the state of the
message-digest algorithm. You can add data to the object and finally ask
for the digest. The XXX should of course be replaced by the proper name
of the digest algorithm you want to use. The two first forms are simply
syntactic sugar which automatically load the right module on first use.
The second form allow you to use algorithm names which contains letters
which are not legal perl identifiers, e.g. SHA-1. If no implementation
for the given algorithm can be found, then an exception is raised. To
know what arguments (if any) the constructor takes (the $args,...
above) consult the docs for the specific digest implementation. If
new() is called as an instance method (i.e. $ctx
->new) it will just
reset the state the object to the state of a newly created object. No
new object is created in this case, and the return value is the
reference to the object (i.e. $ctx
).
- $other_ctx = $ctx->clone
- The clone method creates a copy of the digest state object and returns a reference to the copy.
- $ctx->reset
- This is just an alias for
$ctx
->new. - $ctx->add( $data )
- $ctx->add( $chunk1, $chunk2, … )
The string value of the $data
provided as argument is appended to the
message we calculate the digest for. The return value is the $ctx
object itself. If more arguments are provided then they are all appended
to the message, thus all these lines will have the same effect on the
state of the $ctx
object: $ctx->add(“a”); $ctx->add(“b”);
$ctx->add(“c”); $ctx->add(“a”)->add(“b”)->add(“c”); $ctx->add(“a”, “b”,
“c”); $ctx->add(“abc”); Most algorithms are only defined for strings of
bytes and this method might therefore croak if the provided arguments
contain chars with ordinal number above 255.
- $ctx->addfile( $io_handle )
- The
$io_handle
is read until EOF and the content is appended to the message we calculate the digest for. The return value is the$ctx
object itself. The addfile() method will croak() if it fails reading data for some reason. If it croaks it is unpredictable what the state of the$ctx
object will be in. The addfile() method might have been able to read the file partially before it failed. It is probably wise to discard or reset the$ctx
object if this occurs. In most cases you want to make sure that the$io_handle
is in binmode before you pass it as argument to the addfile() method. - $ctx->add_bits( $data, $nbits )
- $ctx->add_bits( $bitstring )
The add_bits() method is an alternative to add() that allow partial
bytes to be appended to the message. Most users can just ignore this
method since typical applications involve only whole-byte data. The two
argument form of add_bits() will add the first $nbits
bits from
$data
. For the last potentially partial byte only the high order
$nbits % 8
bits are used. If $nbits
is greater than
length($data) * 8
, then this method would do the same as
$ctx->add($data)
. The one argument form of add_bits() takes a
$bitstring
of 1 and 0 chars as argument. It’s a shorthand for
$ctx->add_bits(pack("B*",
$bitstring), length($bitstring)). The return
value is the $ctx
object itself. This example shows two calls that
should have the same effect: $ctx->add_bits(“111100001010”);
$ctx->add_bits(“\xF0\xA0”, 12); Most digest algorithms are byte based
and for these it is not possible to add bits that are not a multiple of
8, and the add_bits() method will croak if you try.
- $ctx->digest
- Return the binary digest for the message. Note that
the
digest
operation is effectively a destructive, read-once operation. Once it has been performed, the$ctx
object is automaticallyreset
and can be used to calculate another digest value. Call$ctx
->clone->digest if you want to calculate the digest without resetting the digest state. - $ctx->hexdigest
- Same as
$ctx
->digest, but will return the digest in hexadecimal form. - $ctx->b64digest
- Same as
$ctx
->digest, but will return the digest as a base64 encoded string without padding. - $ctx->base64_padded_digest
- Same as
$ctx
->digest, but will return the digest as a base64 encoded string.
Digest speed
This table should give some indication on the relative speed of different algorithms. It is sorted by throughput based on a benchmark done with of some implementations of this API:
Algorithm Size Implementation MB/s MD4 128 Digest::MD4 v1.3 165.0 MD5 128 Digest::MD5 v2.33 98.8 SHA-256 256 Digest::SHA2 v1.1.0 66.7 SHA-1 160 Digest::SHA v4.3.1 58.9 SHA-1 160 Digest::SHA1 v2.10 48.8 SHA-256 256 Digest::SHA v4.3.1 41.3 Haval-256 256 Digest::Haval256 v1.0.4 39.8 SHA-384 384 Digest::SHA2 v1.1.0 19.6 SHA-512 512 Digest::SHA2 v1.1.0 19.3 SHA-384 384 Digest::SHA v4.3.1 19.2 SHA-512 512 Digest::SHA v4.3.1 19.2 Whirlpool 512 Digest::Whirlpool v1.0.2 13.0 MD2 128 Digest::MD2 v2.03 9.5 Adler-32 32 Digest::Adler32 v0.03 1.3 CRC-16 16 Digest::CRC v0.05 1.1 CRC-32 32 Digest::CRC v0.05 1.1 MD5 128 Digest::Perl::MD5 v1.5 1.0 CRC-CCITT 16 Digest::CRC v0.05 0.8
These numbers was achieved Apr 2004 with ActivePerl-5.8.3 running under Linux on a P4 2.8 GHz CPU. The last 5 entries differ by being pure perl implementations of the algorithms, which explains why they are so slow.
SEE ALSO
Digest::Adler32, Digest::CRC, Digest::Haval256, Digest::HMAC, Digest::MD2, Digest::MD4, Digest::MD5, Digest::SHA, Digest::SHA1, Digest::SHA2, Digest::Whirlpool
New digest implementations should consider subclassing from Digest::base.
MIME::Base64
AUTHOR
Gisle Aas <gisle@aas.no>
The Digest::
interface is based on the interface originally developed
by Neil Winton for his MD5
module.
This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself.
Copyright 1998-2006 Gisle Aas. Copyright 1995,1996 Neil Winton.