Man1 - perlgit.1perl
Table of Contents
NAME
perlgit - Detailed information about git and the Perl repository
DESCRIPTION
This document provides details on using git to develop Perl. If you are just interested in working on a quick patch, see perlhack first. This document is intended for people who are regular contributors to Perl, including those with write access to the git repository.
CLONING THE REPOSITORY
All of Perl’s source code is kept centrally in a Git repository at github.com.
You can make a read-only clone of the repository by running:
% git clone git://github.com/Perl/perl5.git perl
This uses the git protocol (port 9418).
If you cannot use the git protocol for firewall reasons, you can also clone via http:
% git clone https://github.com/Perl/perl5.git perl
WORKING WITH THE REPOSITORY
Once you have changed into the repository directory, you can inspect it. After a clone the repository will contain a single local branch, which will be the current branch as well, as indicated by the asterisk.
% git branch * blead
Using the -a switch to branch
will also show the remote tracking
branches in the repository:
% git branch -a * blead origin/HEAD origin/blead …
The branches that begin with origin correspond to the git remote that
you cloned from (which is named origin). Each branch on the remote will
be exactly tracked by these branches. You should NEVER do work on these
remote tracking branches. You only ever do work in a local branch. Local
branches can be configured to automerge (on pull) from a designated
remote tracking branch. This is the case with the default branch blead
which will be configured to merge from the remote tracking branch
origin/blead
.
You can see recent commits:
% git log
And pull new changes from the repository, and update your local repository (must be clean first)
% git pull
Assuming we are on the branch blead
immediately after a pull, this
command would be more or less equivalent to:
% git fetch % git merge origin/blead
In fact if you want to update your local repository without touching your working directory you do:
% git fetch
And if you want to update your remote-tracking branches for all defined remotes simultaneously you can do
% git remote update
Neither of these last two commands will update your working directory, however both will update the remote-tracking branches in your repository.
To make a local branch of a remote branch:
% git checkout -b maint-5.10 origin/maint-5.10
To switch back to blead:
% git checkout blead
Finding out your status
The most common git command you will use will probably be
% git status
This command will produce as output a description of the current state of the repository, including modified files and unignored untracked files, and in addition it will show things like what files have been staged for the next commit, and usually some useful information about how to change things. For instance the following:
% git status On branch blead Your branch is ahead of origin/blead by 1 commit. Changes to be committed: (use “git reset HEAD <file>…” to unstage) modified: pod/perlgit.pod Changes not staged for commit: (use “git add <file>…” to update what will be committed) (use “git checkout – <file>…” to discard changes in working directory) modified: pod/perlgit.pod Untracked files: (use “git add <file>…” to include in what will be committed) deliberate.untracked
This shows that there were changes to this document staged for commit,
and that there were further changes in the working directory not yet
staged. It also shows that there was an untracked file in the working
directory, and as you can see shows how to change all of this. It also
shows that there is one commit on the working branch blead
which has
not been pushed to the origin
remote yet. NOTE: This output is also
what you see as a template if you do not provide a message to
git commit
.
Patch workflow
First, please read perlhack for details on hacking the Perl core. That document covers many details on how to create a good patch.
If you already have a Perl repository, you should ensure that you’re on the blead branch, and your repository is up to date:
% git checkout blead % git pull
It’s preferable to patch against the latest blead version, since this is where new development occurs for all changes other than critical bug fixes. Critical bug fix patches should be made against the relevant maint branches, or should be submitted with a note indicating all the branches where the fix should be applied.
Now that we have everything up to date, we need to create a temporary new branch for these changes and switch into it:
% git checkout -b orange
which is the short form of
% git branch orange % git checkout orange
Creating a topic branch makes it easier for the maintainers to rebase or merge back into the master blead for a more linear history. If you don’t work on a topic branch the maintainer has to manually cherry pick your changes onto blead before they can be applied.
That’ll get you scolded on perl5-porters, so don’t do that. Be Awesome.
Then make your changes. For example, if Leon Brocard changes his name to Orange Brocard, we should change his name in the AUTHORS file:
% perl -pi -e s{Leon Brocard}{Orange Brocard} AUTHORS
You can see what files are changed:
% git status On branch orange Changes to be committed: (use “git reset HEAD <file>…” to unstage) modified: AUTHORS
And you can see the changes:
% git diff diff –git a/AUTHORS b/AUTHORS index 293dd70..722c93e 100644
— a/AUTHORS + b/AUTHORS @@ -541,7 +541,7 @@ Lars Hecking
<lhecking@nmrc.ucc.ie> Laszlo Molnar <laszlo.molnar@eth.ericsson.se>
Leif Huhn <leif@hale.dkstat.com> Len Johnson <lenjay@ibm.net> -Leon
Brocard <acme@astray.com> +Orange Brocard <acme@astray.com> Les Peters
<lpeters@aol.net> Lesley Binks <lesley.binks@gmail.com> Lincoln D. Stein
<lstein@cshl.org>
Now commit your change locally:
% git commit -a -m Rename Leon Brocard to Orange Brocard Created commit 6196c1d: Rename Leon Brocard to Orange Brocard 1 files changed, 1 insertions(+), 1 deletions(-)
The -a
option is used to include all files that git tracks that you
have changed. If at this time, you only want to commit some of the files
you have worked on, you can omit the -a
and use the command
git add =/=FILE ...=/ before doing the commit. =git add --interactive
allows you to even just commit portions of files instead of all the
changes in them.
The -m
option is used to specify the commit message. If you omit it,
git will open a text editor for you to compose the message
interactively. This is useful when the changes are more complex than the
sample given here, and, depending on the editor, to know that the first
line of the commit message doesn’t exceed the 50 character legal
maximum. See Commit message in perlhack for more information about what
makes a good commit message.
Once you’ve finished writing your commit message and exited your editor, git will write your change to disk and tell you something like this:
Created commit daf8e63: explain git status and stuff about remotes 1 files changed, 83 insertions(+), 3 deletions(-)
If you re-run git status
, you should see something like this:
% git status On branch orange Untracked files: (use “git add <file>…” to include in what will be committed) deliberate.untracked nothing added to commit but untracked files present (use “git add” to track)
When in doubt, before you do anything else, check your status and read it carefully, many questions are answered directly by the git status output.
You can examine your last commit with:
% git show HEAD
and if you are not happy with either the description or the patch itself you can fix it up by editing the files once more and then issue:
% git commit -a –amend
Now, create a fork on GitHub to push your branch to, and add it as a remote if you haven’t already, as described in the GitHub documentation at https://help.github.com/en/articles/working-with-forks:
% git remote add fork git@github.com:MyUser/perl5.git
And push the branch to your fork:
% git push -u fork orange
You should now submit a Pull Request (PR) on GitHub from the new branch to blead. For more information, see the GitHub documentation at https://help.github.com/en/articles/creating-a-pull-request-from-a-fork.
You can also send patch files to perl5-porters@perl.org mailto:perl5-porters@perl.org directly if the patch is not ready to be applied, but intended for discussion.
To create a patch file for all your local changes:
% git format-patch -M blead.. 0001-Rename-Leon-Brocard-to-Orange-Brocard.patch
Or for a lot of changes, e.g. from a topic branch:
% git format-patch –stdout -M blead.. > topic-branch-changes.patch
If you want to delete your temporary branch, you may do so with:
% git checkout blead % git branch -d orange error: The branch orange is not an ancestor of your current HEAD. If you are sure you want to delete it, run git branch -D orange. % git branch -D orange Deleted branch orange.
A note on derived files
Be aware that many files in the distribution are derivativeΩ-avoid patching them, because git won’t see the changes to them, and the build process will overwrite them. Patch the originals instead. Most utilities (like perldoc) are in this category, i.e. patch utils/perldoc.PL rather than utils/perldoc. Similarly, don’t create patches for files under =$src_root=/ext from their copies found in =$install_root=/lib. If you are unsure about the proper location of a file that may have gotten copied while building the source distribution, consult the MANIFEST.
Cleaning a working directory
The command git clean
can with varying arguments be used as a
replacement for make clean
.
To reset your working directory to a pristine condition you can do:
% git clean -dxf
However, be aware this will delete ALL untracked content. You can use
% git clean -Xf
to remove all ignored untracked files, such as build and test byproduct, but leave any manually created files alone.
If you only want to cancel some uncommitted edits, you can use git
checkout and give it a list of files to be reverted, or git checkout
-f to revert them all.
If you want to cancel one or several commits, you can use git reset
.
Bisecting
git
provides a built-in way to determine which commit should be blamed
for introducing a given bug. git bisect
performs a binary search of
history to locate the first failing commit. It is fast, powerful and
flexible, but requires some setup and to automate the process an
auxiliary shell script is needed.
The core provides a wrapper program, Porting/bisect.pl, which attempts to simplify as much as possible, making bisecting as simple as running a Perl one-liner. For example, if you want to know when this became an error:
perl -e my $a := 2
you simply run this:
…/Porting/bisect.pl -e my $a := 2;
Using Porting/bisect.pl, with one command (and no other files) it’s easy to find out
- Which commit caused this example code to break?
- Which commit caused this example code to start working?
- Which commit added the first file to match this regex?
- Which commit removed the last file to match this regex?
usually without needing to know which versions of perl to use as start
and end revisions, as Porting/bisect.pl automatically searches to find
the earliest stable version for which the test case passes. Run
Porting/bisect.pl --help
for the full documentation, including how to
set the Configure
and build time options.
If you require more flexibility than Porting/bisect.pl has to offer,
you’ll need to run git bisect
yourself. It’s most useful to use
git bisect run
to automate the building and testing of perl revisions.
For this you’ll need a shell script for git
to call to test a
particular revision. An example script is Porting/bisect-example.sh,
which you should copy outside of the repository, as the bisect process
will reset the state to a clean checkout as it runs. The instructions
below assume that you copied it as ~/run and then edited it as
appropriate.
You first enter in bisect mode with:
% git bisect start
For example, if the bug is present on HEAD
but wasn’t in 5.10.0, git
will learn about this when you enter:
% git bisect bad % git bisect good perl-5.10.0 Bisecting: 853 revisions left to test after this
This results in checking out the median commit between HEAD
and
perl-5.10.0
. You can then run the bisecting process with:
% git bisect run ~/run
When the first bad commit is isolated, git bisect
will tell you so:
ca4cfd28534303b82a216cfe83a1c80cbc3b9dc5 is first bad commit commit ca4cfd28534303b82a216cfe83a1c80cbc3b9dc5 Author: Dave Mitchell <davem@fdisolutions.com> Date: Sat Feb 9 14:56:23 2008 +0000 [perl #49472] Attributes + Unknown Error … bisect run success
You can peek into the bisecting process with git bisect log
and
git bisect visualize
. git bisect reset
will get you out of bisect
mode.
Please note that the first good
state must be an ancestor of the first
bad
state. If you want to search for the commit that solved some
bug, you have to negate your test case (i.e. exit with 1
if OK and 0
if not) and still mark the lower bound as good
and the upper as bad
.
The first bad commit has then to be understood as the first commit where
the bug is solved.
git help bisect
has much more information on how you can tweak your
binary searches.
Following bisection you may wish to configure, build and test perl at
commits identified by the bisection process. Sometimes, particularly
with older perls, make
may fail during this process. In this case you
may be able to patch the source code at the older commit point. To do
so, please follow the suggestions provided in Building perl at older
commits in perlhack.
Topic branches and rewriting history
Individual committers should create topic branches under yourname*/*some_descriptive_name:
% branch=“$yourname/$some_descriptive_name” % git checkout -b $branch … do local edits, commits etc … % git push origin -u $branch
Should you be stuck with an ancient version of git (prior to 1.7), then
git push
will not have the -u
switch, and you have to replace the
last step with the following sequence:
% git push origin $branch:refs/heads/$branch % git config branch.$branch.remote origin % git config branch.$branch.merge refs/heads/$branch
If you want to make changes to someone else’s topic branch, you should check with its creator before making any change to it.
You might sometimes find that the original author has edited the branch’s history. There are lots of good reasons for this. Sometimes, an author might simply be rebasing the branch onto a newer source point. Sometimes, an author might have found an error in an early commit which they wanted to fix before merging the branch to blead.
Currently the master repository is configured to forbid non-fast-forward merges. This means that the branches within can not be rebased and pushed as a single step.
The only way you will ever be allowed to rebase or modify the history of a pushed branch is to delete it and push it as a new branch under the same name. Please think carefully about doing this. It may be better to sequentially rename your branches so that it is easier for others working with you to cherry-pick their local changes onto the new version. (XXX: needs explanation).
If you want to rebase a personal topic branch, you will have to delete
your existing topic branch and push as a new version of it. You can do
this via the following formula (see the explanation about refspec
’s in
the git push documentation for details) after you have rebased your
branch:
origin/blead # then “delete-and-push” % git push origin :$user/$topic % git push origin $user/$topic
NOTE: it is forbidden at the repository level to delete any of the
primary branches. That is any branch matching m!^(blead|maint|perl)!
.
Any attempt to do so will result in git producing an error like this:
% git push origin :blead * It is forbidden to delete blead/maint branches in this repository error: hooks/update exited with error code 1 error: hook declined to update refs/heads/blead To ssh://perl5.git.perl.org/perl ! [remote rejected] blead (hook declined) error: failed to push some refs to ssh://perl5.git.perl.org/perl
As a matter of policy we do not edit the history of the blead and maint-* branches. If a typo (or worse) sneaks into a commit to blead or maint-*, we’ll fix it in another commit. The only types of updates allowed on these branches are fast-forwards, where all history is preserved.
Annotated tags in the canonical perl.git repository will never be deleted or modified. Think long and hard about whether you want to push a local tag to perl.git before doing so. (Pushing simple tags is not allowed.)
Grafts
The perl history contains one mistake which was not caught in the
conversion: a merge was recorded in the history between blead and
maint-5.10 where no merge actually occurred. Due to the nature of git,
this is now impossible to fix in the public repository. You can remove
this mis-merge locally by adding the following line to your
.git/info/grafts
file:
296f12bbbbaa06de9be9d09d3dcf8f4528898a49 434946e0cb7a32589ed92d18008aaa1d88515930
It is particularly important to have this graft line if any bisecting is done in the area of the merge in question.
WRITE ACCESS TO THE GIT REPOSITORY
Once you have write access, you will need to modify the URL for the origin remote to enable pushing. Edit .git/config with the git-config (1) command:
% git config remote.origin.url git@github.com:Perl/perl5.git
You can also set up your user name and e-mail address. Most people do this once globally in their ~.gitconfig/ by doing something like:
% git config –global user.name “AA’u*4/10)’Evar Arnfjo\k:.r∂~’u’‐ Bjarmason” % git config –global user.email avarab@gmail.com
However, if you’d like to override that just for perl, execute something like the following in perl:
% git config user.email avar@cpan.org
It is also possible to keep origin
as a git remote, and add a new
remote for ssh access:
% git remote add camel git@github.com:Perl/perl5.git
This allows you to update your local repository by pulling from
origin
, which is faster and doesn’t require you to authenticate, and
to push your changes back with the camel
remote:
% git fetch camel % git push camel
The fetch
command just updates the camel
refs, as the objects
themselves should have been fetched when pulling from origin
.
Working with Github pull requests
Pull requests typically originate from outside of the Perl/perl.git
repository, so if you want to test or work with it locally a vanilla
git fetch
from the Perl/perl5.git
repository won’t fetch it.
However Github does provide a mechanism to fetch a pull request to a
local branch. They are available on Github remotes under pull/
, so you
can use git fetch pull/=/=PRID=/=/head:=/=localname=/ to make a local
copy. eg. to fetch pull request 9999 to the local branch
=local-branch-name
run:
git fetch origin pull/9999/head:local-branch-name
and then:
git checkout local-branch-name
Note: this branch is not rebased on blead
, so instead of the checkout
above, you might want:
git rebase origin/blead local-branch-name
which rebases local-branch-name
on blead
, and checks it out.
Alternatively you can configure the remote to fetch all pull requests as
remote-tracking branches. To do this edit the remote in .git/config,
for example if your github remote is origin
you’d have:
[remote “origin”] url = git@github.com:/Perl/perl5.git fetch = +refs/heads/*:refs/remotes/origin/*
Add a line to map the remote pull request branches to remote-tracking branches:
[remote “origin”] url = git@github.com:/Perl/perl5.git fetch = +refs/heads/*:refs/remotes/origin/* fetch = +refs/pull/*/head:refs/remotes/origin/pull/*
and then do a fetch as normal:
git fetch origin
This will create a remote-tracking branch for every pull request, including closed requests.
To remove those remote-tracking branches, remove the line added above and prune:
git fetch -p origin # or git remote prune origin
Accepting a patch
If you have received a patch file generated using the above section, you should try out the patch.
First we need to create a temporary new branch for these changes and switch into it:
% git checkout -b experimental
Patches that were formatted by git format-patch
are applied with
git am
:
% git am 0001-Rename-Leon-Brocard-to-Orange-Brocard.patch Applying Rename Leon Brocard to Orange Brocard
Note that some UNIX mail systems can mess with text attachments containing ’From ’. This will fix them up:
% perl -pi -es/^>From /From / \ 0001-Rename-Leon-Brocard-to-Orange-Brocard.patch
If just a raw diff is provided, it is also possible use this two-step process:
% git apply bugfix.diff % git commit -a -m “Some fixing” \ –author=“That Guy <that.guy@internets.com>”
Now we can inspect the change:
% git show HEAD commit b1b3dab48344cff6de4087efca3dbd63548ab5e2 Author:
Leon Brocard <acme@astray.com> Date: Fri Dec 19 17:02:59 2008 0000
Rename Leon Brocard to Orange Brocard diff –git a/AUTHORS b/AUTHORS
index 293dd70..722c93e 100644 — a/AUTHORS ++ b/AUTHORS @@ -541,7
+541,7 @@ Lars Hecking <lhecking@nmrc.ucc.ie> Laszlo Molnar
<laszlo.molnar@eth.ericsson.se> Leif Huhn <leif@hale.dkstat.com> Len
Johnson <lenjay@ibm.net> -Leon Brocard <acme@astray.com> +Orange Brocard
<acme@astray.com> Les Peters <lpeters@aol.net> Lesley Binks
<lesley.binks@gmail.com> Lincoln D. Stein <lstein@cshl.org>
If you are a committer to Perl and you think the patch is good, you can then merge it into blead then push it out to the main repository:
% git checkout blead % git merge experimental % git push origin blead
If you want to delete your temporary branch, you may do so with:
% git checkout blead % git branch -d experimental error: The branch experimental is not an ancestor of your current HEAD. If you are sure you want to delete it, run git branch -D experimental. % git branch -D experimental Deleted branch experimental.
Committing to blead
The ’blead’ branch will become the next production release of Perl.
Before pushing any local change to blead, it’s incredibly important that you do a few things, lest other committers come after you with pitchforks and torches:
- Make sure you have a good commit message. See Commit message in perlhack for details.
- Run the test suite. You might not think that one typo fix would break a test file. You’d be wrong. Here’s an example of where not running the suite caused problems. A patch was submitted that added a couple of tests to an existing .t. It couldn’t possibly affect anything else, so no need to test beyond the single affected .t, right? But, the submitter’s email address had changed since the last of their submissions, and this caused other tests to fail. Running the test target given in the next item would have caught this problem.
- If you don’t run the full test suite, at least
make test_porting
. This will run basic sanity checks. To see which sanity checks, have a look in t/porting. - If you make any changes that affect miniperl or core routines that
have different code paths for miniperl, be sure to run
make minitest
. This will catch problems that even the full test suite will not catch because it runs a subset of tests under miniperl rather than perl.
On merging and rebasing
Simple, one-off commits pushed to the ’blead’ branch should be simple commits that apply cleanly. In other words, you should make sure your work is committed against the current position of blead, so that you can push back to the master repository without merging.
Sometimes, blead will move while you’re building or testing your changes. When this happens, your push will be rejected with a message like this:
To ssh://perl5.git.perl.org/perl.git ! [rejected] blead -> blead (non-fast-forward) error: failed to push some refs to ssh://perl5.git.perl.org/perl.git To prevent you from losing history, non-fast-forward updates were rejected Merge the remote changes (e.g. git pull) before pushing again. See the Note about fast-forwards section of git push –help for details.
When this happens, you can just rebase your work against the new position of blead, like this (assuming your remote for the master repository is p5p):
% git fetch p5p % git rebase p5p/blead
You will see your commits being re-applied, and you will then be able to push safely. More information about rebasing can be found in the documentation for the git-rebase (1) command.
For larger sets of commits that only make sense together, or that would
benefit from a summary of the set’s purpose, you should use a merge
commit. You should perform your work on a topic branch, which you should
regularly rebase against blead to ensure that your code is not broken by
blead moving. When you have finished your work, please perform a final
rebase and test. Linear history is something that gets lost with every
commit on blead, but a final rebase makes the history linear again,
making it easier for future maintainers to see what has happened. Rebase
as follows (assuming your work was on the branch committer/somework
):
% git checkout committer/somework % git rebase blead
Then you can merge it into master like this:
% git checkout blead % git merge –no-ff –no-commit committer/somework % git commit -a
The switches above deserve explanation. --no-ff
indicates that even if
all your work can be applied linearly against blead, a merge commit
should still be prepared. This ensures that all your work will be shown
as a side branch, with all its commits merged into the mainstream blead
by the merge commit.
--no-commit
means that the merge commit will be prepared but not
committed. The commit is then actually performed when you run the next
command, which will bring up your editor to describe the commit. Without
--no-commit
, the commit would be made with nearly no useful message,
which would greatly diminish the value of the merge commit as a
placeholder for the work’s description.
When describing the merge commit, explain the purpose of the branch, and keep in mind that this description will probably be used by the eventual release engineer when reviewing the next perldelta document.
Committing to maintenance versions
Maintenance versions should only be altered to add critical bug fixes, see perlpolicy.
To commit to a maintenance version of perl, you need to create a local tracking branch:
% git checkout –track -b maint-5.005 origin/maint-5.005
This creates a local branch named maint-5.005
, which tracks the remote
branch origin/maint-5.005
. Then you can pull, commit, merge and push
as before.
You can also cherry-pick commits from blead and another branch, by using
the git cherry-pick
command. It is recommended to use the -x option
to git cherry-pick
in order to record the SHA1 of the original commit
in the new commit message.
Before pushing any change to a maint version, make sure you’ve satisfied the steps in Committing to blead above.
Using a smoke-me branch to test changes
Sometimes a change affects code paths which you cannot test on the OSes which are directly available to you and it would be wise to have users on other OSes test the change before you commit it to blead.
Fortunately, there is a way to get your change smoke-tested on various
OSes: push it to a smoke-me branch and wait for certain automated
smoke-testers to report the results from their OSes. A smoke-me branch
is identified by the branch name: specifically, as seen on github.com it
must be a local branch whose first name component is precisely
smoke-me
.
The procedure for doing this is roughly as follows (using the example of tonyc’s smoke-me branch called win32stat):
First, make a local branch and switch to it:
% git checkout -b win32stat
Make some changes, build perl and test your changes, then commit them to your local branch. Then push your local branch to a remote smoke-me branch:
% git push origin win32stat:smoke-me/tonyc/win32stat
Now you can switch back to blead locally:
% git checkout blead
and continue working on other things while you wait a day or two, keeping an eye on the results reported for your smoke-me branch at http://perl.develop-help.com/?b=smoke-me/tonyc/win32state.
If all is well then update your blead branch:
% git pull
then checkout your smoke-me branch once more and rebase it on blead:
% git rebase blead win32stat
Now switch back to blead and merge your smoke-me branch into it:
% git checkout blead % git merge win32stat
As described earlier, if there are many changes on your smoke-me branch then you should prepare a merge commit in which to give an overview of those changes by using the following command instead of the last command above:
% git merge win32stat –no-ff –no-commit
You should now build perl and test your (merged) changes one last time (ideally run the whole test suite, but failing that at least run the t/porting/*.t tests) before pushing your changes as usual:
% git push origin blead
Finally, you should then delete the remote smoke-me branch:
% git push origin :smoke-me/tonyc/win32stat
(which is likely to produce a warning like this, which can be ignored:
remote: fatal: ambiguous argument refs/heads/smoke-me/tonyc/win32stat: unknown revision or path not in the working tree. remote: Use – to separate paths from revisions
) and then delete your local branch:
% git branch -d win32stat